If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2z^2+3z-20=0
a = 2; b = 3; c = -20;
Δ = b2-4ac
Δ = 32-4·2·(-20)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-13}{2*2}=\frac{-16}{4} =-4 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+13}{2*2}=\frac{10}{4} =2+1/2 $
| -9/k=72 | | 3x=522 | | 6x-36=-6 | | 0.7x=10.6+12 | | 32/f=8 | | (-6)-3y=1 | | -175-8x=2x+75 | | 7/8=3/b | | -7(4-5a)=-203 | | 4+4n=-14 | | 226/x=6.8 | | -23=8r-4r | | 8(1+2r)=-104 | | -11x-25=10-10x | | -1+8x=134 | | -200=-8(1+3m) | | -9a-4a=30 | | (x+17)÷3=10 | | (X+40)=(4x-5) | | x+55+x+74+73=180 | | 3x2+x+27=0 | | 6-5x+8=29 | | 138=6+3(7x+9) | | -7+8n=3n+6n | | 4x+11=x+20 | | 1-5p=5-7p | | 2m2+3m=5 | | 8x+4x-34=26 | | 6x-51=3x-21 | | 4t^2+16t=-60 | | 9=-1/7c | | 2x15=5x-10 |